Search results for " Band Gap"
showing 10 items of 78 documents
Hall effect and electronic structure of films
2010
Abstract Tunneling experiments have shown that in order to retain half-metallicity at room temperature not only a large gap is required but also a Fermi energy considerably distant from the minority band edges. We correlate the position of the Fermi energy in the spin minority gap obtained from band structure calculations to Hall effect experiments. As a model system we chose Co 2 Fe x Mn 1 - x Si , where the Fermi energy was calculated to move from the valence band edge of the minority states to the conduction band edge with increasing x . On high quality laser ablated epitaxial films we observe a sign change of both the normal and the anomalous Hall effect with doping. The experimental da…
A comprehensive study of structure and properties of nanocrystalline zinc peroxide
2022
Abstract Nanocrystalline zinc peroxide (nano-ZnO2) was synthesized through a hydrothermal process and comprehensively studied using several experimental techniques. Its crystal structure was characterized by X-ray diffraction, and the average crystallite size of 22 nm was estimated by Rietveld refinement. The temperature-dependent local environment around zinc atoms was reconstructed using reverse Monte Carlo (RMC) analysis from the Zn K-edge X-ray absorption spectra. The indirect band gap of about 4.6 eV was found using optical absorption spectroscopy. Lattice dynamics of nano-ZnO2 was studied by infrared and Raman spectroscopy. In situ Raman measurements indicate the stability of nano-ZnO…
Influence of the electrodeposition conditions on the energetics of polypyrrole thin films
2008
The influence of the solvent used for the electrodeposition and that of the dopant anion on the energetics of electrochemically grown polypyrrole were studied by means of a non-destructive optical technique: Photocurrent Spectroscopy. Polypyrrole films doped with the same anion and grown in different solvents, both aqueous and non- aqueous, show the same HOMO-LUMO gap and the same Fermi level location in respect to HOMO. Polypyrrole films doped with different anions in aqueous solutions, present different values of indirect band gap and flat band potential, indicating that dopant anion influences both the defects band and the Fermi level locations.
Nonlinear pressure dependence of the direct band gap in adamantine ordered-vacancy compounds
2010
A strong nonlinear pressure dependence of the optical absorption edge has been measured in defect chalcopyrites CdGa{sub 2}Se{sub 4} and HgGa{sub 2}Se{sub 4}. The behavior is due to the nonlinear pressure dependence of the direct band-gap energy in these compounds as confirmed by ab initio calculations. Our calculations for CdGa{sub 2}Se{sub 4}, HgGa{sub 2}Se{sub 4} and monoclinic {beta}-Ga{sub 2}Se{sub 3} provide evidence that the nonlinear pressure dependence of the direct band-gap energy is a general feature of adamantine ordered-vacancy compounds irrespective of their composition and crystalline structure. The nonlinear behavior is due to a conduction band anticrossing at the {Gamma} po…
High pressure theoretical and experimental analysis of the bandgap of BaMoO4, PbMoO4, and CdMoO4
2019
We have investigated the origin of the bandgap of BaMoO4, PbMoO4, and CdMoO4 crystals on the basis of optical absorption spectroscopy experiments and ab initio electronic band structure, density of states, and electronic localization function calculations under high pressure. Our study provides an accurate determination of the bandgaps Eg and their pressure derivatives d E g / dP for BaMoO4 (4.43 eV, −4.4 meV/GPa), PbMoO4 (3.45 eV, −53.8 meV/GPa), and CdMoO4 (3.71 eV, −3.3 meV/GPa). The absorption edges were fitted with the Urbach exponential model which we demonstrate to be the most appropriate for thick crystals with direct bandgaps. So far, the narrowing of the bandgap of distinct PbMoO4…
High-pressure optical absorption in InN: Electron density dependence in the wurtzite phase and reevaluation of the indirect band gap of rocksalt InN
2012
We report on high-pressure optical absorption measurements on InN epilayers with a range of free-electron concentrations (5×1017–1.6×1019 cm−3) to investigate the effect of free carriers on the pressure coefficient of the optical band gap of wurtzite InN. With increasing carrier concentration, we observe a decrease of the absolute value of the optical band gap pressure coefficient of wurtzite InN. An analysis of our data based on the k·p model allows us to obtain a pressure coefficient of 32 meV/GPa for the fundamental band gap of intrinsic wurtzite InN. Optical absorption measurements on a 5.7-μm-thick InN epilayer at pressures above the wurtzite-to-rocksalt transition have allowed us to o…
Low-temperature exciton absorption in InSe under pressure.
1992
We have investigated the effect of pressure on the lowest direct band-edge exciton of the layered semiconductor InSe by optical-absorption measurements at 10 K and for pressures up to 4 GPa. The Elliott-Toyozawa formalism is used to analyze the line shape of the exciton absorption spectra. In this way we determine the pressure dependence of the lowest direct band gap, the exciton binding energy, and the exciton linewidth. The band gap exhibits a pronounced nonlinear shift with pressure, which is a consequence of the strong anisotropy of intralayer and interlayer bonding. The exciton binding energy decreases with pressure, mainly due to the large increase of the low-frequency dielectric cons…
Experimental Observation of a Large Low-Frequency Band Gap in a Polymer Waveguide
2018
The quest for large and low-frequency band gaps is one of the principal objectives pursued in a number of engineering applications, ranging from noise absorption to vibration control, and to seismic wave abatement. For this purpose, a plethora of complex architectures (including multiphase materials) and multiphysics approaches have been proposed in the past, often involving difficulties in their practical realization. To address the issue of proposing a material design that enables large band gaps using a simple configuration, in this study we propose an easy-to-manufacture design able to open large, low-frequency complete Lamb band gaps exploiting a suitable arrangement of masses and stif…
Photo-induced cubic-to-hexagonal polytype transition in silicon nanowires
2019
Transformation of the crystalline lattice in silicon nanowires from cubic diamond (cub-Si) to hexagonal diamond (hex-Si) was observed under laser irradiation at intensities above 10 kW cm−2 (wavelength of 473 nm) by appearance of an additional peak in their Raman spectra in the range from 490 to 505 cm−1. Formation of the hex-Si phase in SiNWs is favoured by strong mechanical stresses caused by inhomogeneous photo-induced heating, which results in a singlet–doublet splitting of the Raman peaks for LO and TO phonons at about 517 and 510 cm−1, respectively. The estimated values of the photo-induced mechanical stresses and temperatures required for the polytype transformation in SiNWs correspo…
Synthesis and characterization of GaN/ReS2, ZnS/ReS2 and ZnO/ReS2 core/shell nanowire heterostructures
2020
This research was funded by the ERDF project “Smart Metal Oxide Nanocoatings and HIPIMS Technology”, project number: 1.1.1.1/18/A/073. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART².